Michael N Hall

Michael N. Hall

Michael N Hall
PhD
Professor, Biozentrum, University of Basel, Basel, Switzerland
Share this profile
For his discovery of the nutrient activated protein kinase TOR and elucidation of its central control of cell growth, critical to development and aging and widely implicated in cancers, diabetes, cardiovascular and immune diseases.

The work:

Cell division, growth and death are the most fundamental features of life. Dr. Hall discovered and named the protein “target of rapamycin” (TOR), which regulates cell growth. In TOR, Hall found a key protein in cellular communication that when blocked pharmacologically can contain the uncontrolled cell growth and division that is typical for cancer. TOR is also a central controller of cell growth that plays a key role in development and TOR was the first protein that demonstrated to influence longevity in all of the four ageing species that scientists commonly use to study ageing: yeast, worms, flies and mice.

The impact:

Dr. Hall's discovery has contributed to a deeper understanding of fundamental life processes such as cell division, growth and death. Insights into TOR signaling pathways and their involvement in disease have opened the door for new therapeutic strategies for cancer, obesity, diabetes, and cardiovascular disease. Pharmacological inhibition of TOR also helps patients accept transplanted organs.

Bio

Michael N. Hall was born (1953) in Puerto Rico and grew up in South America (Venezuela and Peru). He received his Ph.D. from Harvard University and was a postdoctoral fellow at the Pasteur Institute (Paris, France) and the University of California, San Francisco. He joined the Biozentrum of the University of Basel (Switzerland) in 1987 where he is currently Professor and former Chair of Biochemistry. Hall is a pioneer in the fields of TOR signaling and cell growth control. In 1991, Hall and colleagues discovered TOR (Target of Rapamycin) and subsequently elucidated its role as a central controller of cell growth and metabolism. TOR is a conserved, nutrient- and insulin-activated protein kinase.

The discovery of TOR led to a fundamental change in how one thinks of cell growth. It is not a spontaneous process that just happens when building blocks (nutrients) are available, but rather a highly regulated, plastic process controlled by TOR-dependent signaling pathways. As a central controller of cell growth and metabolism, TOR plays a key role in development and aging, and is implicated in disorders such as cancer, cardiovascular disease, diabetes, and obesity. Hall is a member of the US National Academy of Sciences, has received numerous awards, including the Cloëtta Prize for Biomedical Research (2003), the Louis-Jeantet Prize for Medicine (2009), the Marcel Benoist Prize for Sciences or Humanities (2012), and the Breakthrough Prize in Life Sciences (2014), and has served on several editorial and scientific advisory boards. He and his wife Sabine (née Carrère) live in Basel with their daughters Zoé and Léa.